MOTHERFUCKIN' SPACE, BITCHEZ!!!
  • smartasshat

Shadow Portrait of NASA Rover Opportunity on Martian Slope






NASA’s Mars Exploration Rover Opportunity caught its own silhouette in this late-afternoon image taken by the rover’s rear hazard avoidance camera. This camera is mounted low on the rover and has a wide-angle lens.
The image was taken looking eastward shortly before sunset on the 3,609th Martian day, or sol, of Opportunity’s work on Mars (March 20, 2014). The rover’s shadow falls across a slope called the McClure-Beverlin Escarpment on the western rim of Endeavour Crater, where Opportunity is investigating rock layers for evidence about ancient environments.  The scene includes a glimpse into the distance across the 14-mile-wide (22-kilometer-wide) crater.
Image Credit: NASA/JPL-Caltech
Shadow Portrait of NASA Rover Opportunity on Martian Slope

NASA’s Mars Exploration Rover Opportunity caught its own silhouette in this late-afternoon image taken by the rover’s rear hazard avoidance camera. This camera is mounted low on the rover and has a wide-angle lens.

The image was taken looking eastward shortly before sunset on the 3,609th Martian day, or sol, of Opportunity’s work on Mars (March 20, 2014). The rover’s shadow falls across a slope called the McClure-Beverlin Escarpment on the western rim of Endeavour Crater, where Opportunity is investigating rock layers for evidence about ancient environments.  The scene includes a glimpse into the distance across the 14-mile-wide (22-kilometer-wide) crater.

Image Credit: NASA/JPL-Caltech


NASA’s Super Guppy Makes a Special Delivery






NASA’s Super Guppy, a wide-bodied cargo aircraft, landed at the Redstone Army Airfield near Huntsville, Ala. on March 26 with a special delivery: an innovative composite rocket fuel tank. The tank was manufactured at the Boeing Developmental Center in Tukwila, Wash. The tank will be unloaded from the Super Guppy, which has a hinged nose that opens and allows large cargos like the tank to be easily unloaded. After the tank is removed from the Super Guppy, it will be inspected and prepared for testing at NASA’s Marshall Space Flight Center in Huntsville, Ala. The composite tank project is part of the Game Changing Development Program and NASA’sSpace Technology Mission Directorate.
Image credit: NASA/MSFC/Emmett Given
› Alternate view #1› Alternate view #2› Flickr: Super Guppy and Cryotank
NASA’s Super Guppy Makes a Special Delivery

NASA’s Super Guppy, a wide-bodied cargo aircraft, landed at the Redstone Army Airfield near Huntsville, Ala. on March 26 with a special delivery: an innovative composite rocket fuel tank. The tank was manufactured at the Boeing Developmental Center in Tukwila, Wash. The tank will be unloaded from the Super Guppy, which has a hinged nose that opens and allows large cargos like the tank to be easily unloaded. After the tank is removed from the Super Guppy, it will be inspected and prepared for testing at NASA’s Marshall Space Flight Center in Huntsville, Ala. The composite tank project is part of the Game Changing Development Program and NASA’sSpace Technology Mission Directorate.

Image credit: NASA/MSFC/Emmett Given

› Alternate view #1
› Alternate view #2
› Flickr: Super Guppy and Cryotank


Landslide and Barrier Lake Near Oso, Washington






On March 22, 2014, a rainfall-triggered landslide near Oso, Washington sent muddy debris spilling across the North Fork of the Stillaguamish River. The slide left an earthen dam that blocked the river, causing a barrier lake to form. The Operational Land Imager (OLI) on the Landsat 8 satellite acquired this image of landslide debris and the barrier lake on March 23, 2014.
> Read more and view annotated image
Image Credit: NASA Earth Observatory image by Jesse Allen, using Landsat data from the U.S. Geological SurveyCaption: Adam Voiland
Landslide and Barrier Lake Near Oso, Washington

On March 22, 2014, a rainfall-triggered landslide near Oso, Washington sent muddy debris spilling across the North Fork of the Stillaguamish River. The slide left an earthen dam that blocked the river, causing a barrier lake to form. The Operational Land Imager (OLI) on the Landsat 8 satellite acquired this image of landslide debris and the barrier lake on March 23, 2014.

> Read more and view annotated image

Image Credit: NASA Earth Observatory image by Jesse Allen, using Landsat data from the U.S. Geological Survey
Caption: Adam Voiland


Expedition 39 Crew Launches Aboard the Soyuz TMA-12M Rocket






The Soyuz TMA-12M rocket launches from Baikonur Cosmodrome in Kazakhstan on  Wednesday, March 26, 2014 carrying Expedition 39 Soyuz Commander Alexander Skvortsov of the Russian Federal Space Agency, Roscosmos, Flight Engineer Steven Swanson of NASA, and Flight Engineer Oleg Artemyev of Roscosmos to the International Space Station.
Image Credit: NASA/Joel Kowsky
Expedition 39 Crew Launches Aboard the Soyuz TMA-12M Rocket

The Soyuz TMA-12M rocket launches from Baikonur Cosmodrome in Kazakhstan on  Wednesday, March 26, 2014 carrying Expedition 39 Soyuz Commander Alexander Skvortsov of the Russian Federal Space Agency, Roscosmos, Flight Engineer Steven Swanson of NASA, and Flight Engineer Oleg Artemyev of Roscosmos to the International Space Station.

Image Credit: NASA/Joel Kowsky


Expedition 39 Prepares for Today’s Launch






The gantry arms begin to close around the Soyuz TMA-12M spacecraft to secure the rocket at the launch pad on Sunday, March 23, 2014, at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket is scheduled for 5:17 p.m. EDT, March 25 and will send Expedition 39 Soyuz Commander Alexander Skvortsov of the Russian Federal Space Agency, Roscosmos, Flight Engineer Steven Swanson of NASA, and Flight Engineer Oleg Artemyev of Roscosmos on a six-month mission aboard the International Space Station.
Image Credit: NASA/Joel Kowsky
Expedition 39 Prepares for Today’s Launch

The gantry arms begin to close around the Soyuz TMA-12M spacecraft to secure the rocket at the launch pad on Sunday, March 23, 2014, at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket is scheduled for 5:17 p.m. EDT, March 25 and will send Expedition 39 Soyuz Commander Alexander Skvortsov of the Russian Federal Space Agency, Roscosmos, Flight Engineer Steven Swanson of NASA, and Flight Engineer Oleg Artemyev of Roscosmos on a six-month mission aboard the International Space Station.

Image Credit: NASA/Joel Kowsky


Expedition 39 Soyuz Rollout






The sun rises behind the Soyuz launch pad shortly before the Soyuz TMA-12M spacecraft is rolled out by train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Sunday, March, 23, 2014. Launch of the Soyuz rocket is scheduled for March 26 (5:17 p.m. U.S. EDT on March 25) and will send Expedition 39 Soyuz Commander Alexander Skvortsov of the Russian Federal Space Agency, Roscosmos, Flight Engineer Steven Swanson of NASA, and Flight Engineer Oleg Artemyev of Roscosmos on a six-month mission aboard the International Space Station.

Credit: NASA/Bill Ingalls
Expedition 39 Soyuz Rollout

The sun rises behind the Soyuz launch pad shortly before the Soyuz TMA-12M spacecraft is rolled out by train to the launch pad at the Baikonur Cosmodrome, Kazakhstan, Sunday, March, 23, 2014. Launch of the Soyuz rocket is scheduled for March 26 (5:17 p.m. U.S. EDT on March 25) and will send Expedition 39 Soyuz Commander Alexander Skvortsov of the Russian Federal Space Agency, Roscosmos, Flight Engineer Steven Swanson of NASA, and Flight Engineer Oleg Artemyev of Roscosmos on a six-month mission aboard the International Space Station.

Credit: NASA/Bill Ingalls


Hubble Peers at the Heart of NGC 5793






This new Hubble image is centered on NGC 5793, a spiral galaxy over 150 million light-years away in the constellation of Libra. This galaxy has two particularly striking features: a beautiful dust lane and an intensely bright center — much brighter than that of our own galaxy, or indeed those of most spiral galaxies we observe.
NGC 5793 is a Seyfert galaxy. These galaxies have incredibly luminous centers that are thought to be caused by hungry supermassive black holes — black holes that can be billions of times the size of the sun — that pull in and devour gas and dust from their surroundings.
This galaxy is of great interest to astronomers for many reasons. For one, it appears to house objects known as masers. Whereas lasers emit visible light, masers emit microwave radiation. The term “masers” comes from the acronym Microwave Amplification by Stimulated Emission of Radiation. Maser emission is caused by particles that absorb energy from their surroundings and then re-emit this in the microwave part of the spectrum.
Naturally occurring masers, like those observed in NGC 5793, can tell us a lot about their environment; we see these kinds of masers in areas where stars are forming. In NGC 5793 there are also intense mega-masers, which are thousands of times more luminous than the sun.

Credit:  NASA, ESA, and E. Perlman (Florida Institute of Technology)
Hubble Peers at the Heart of NGC 5793

This new Hubble image is centered on NGC 5793, a spiral galaxy over 150 million light-years away in the constellation of Libra. This galaxy has two particularly striking features: a beautiful dust lane and an intensely bright center — much brighter than that of our own galaxy, or indeed those of most spiral galaxies we observe.

NGC 5793 is a Seyfert galaxy. These galaxies have incredibly luminous centers that are thought to be caused by hungry supermassive black holes — black holes that can be billions of times the size of the sun — that pull in and devour gas and dust from their surroundings.

This galaxy is of great interest to astronomers for many reasons. For one, it appears to house objects known as masers. Whereas lasers emit visible light, masers emit microwave radiation. The term “masers” comes from the acronym Microwave Amplification by Stimulated Emission of Radiation. Maser emission is caused by particles that absorb energy from their surroundings and then re-emit this in the microwave part of the spectrum.

Naturally occurring masers, like those observed in NGC 5793, can tell us a lot about their environment; we see these kinds of masers in areas where stars are forming. In NGC 5793 there are also intense mega-masers, which are thousands of times more luminous than the sun.

Credit:  NASA, ESA, and E. Perlman (Florida Institute of Technology)


Coastal Flooding in New Zealand, Early March






A powerful storm passed over New Zealand’s South Island in March 2014 and brought gale-force winds, torrential rains, and flooding to the city of Christchurch. A total of 74 millimeters (3 inches) of rain fell on March 4-5, according to MetService, New Zealand’s national meteorological service. More than 100 homes flooded and more than 4,000 lost power around the country’s third most populous city. Skies had cleared enough by March 6, 2014, for the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite to acquire this image showing the aftermath.
Coastal communities are becoming increasingly vulnerable to the risk of damage and danger from flooding. NASA and NOAA are together launching a new opportunity for citizens to work with us on the very important topic of coastal flooding. This coastal flooding challenge is part of NASA’s third International Space Apps Challenge - a two-day global mass collaboration event on April 12-13, 2014. During these two days, citizens around the world are invited to engage directly with NASA to develop awe-inspiring software, hardware, and data visualizations. Last year’s event involved more than 9,000 global participants in 83 locations. This year will introduce more than 60 robust challenges clustered in five themes: asteroids, Earth watch, human spaceflight, robotics, and space technology. The Coastal Inundation In Your Community challenge is one of four climate-related challenges using data provided by NASA, NOAA and EPA.
> 2014 International Space Apps Challenge: Coastal Inundation in Your Community> NASA Invites Citizens to Collaborate on Coastal Flooding Challenge
Image Credit: NASA - Jeff Schmaltz, LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC
Coastal Flooding in New Zealand, Early March

A powerful storm passed over New Zealand’s South Island in March 2014 and brought gale-force winds, torrential rains, and flooding to the city of Christchurch. A total of 74 millimeters (3 inches) of rain fell on March 4-5, according to MetService, New Zealand’s national meteorological service. More than 100 homes flooded and more than 4,000 lost power around the country’s third most populous city. Skies had cleared enough by March 6, 2014, for the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite to acquire this image showing the aftermath.

Coastal communities are becoming increasingly vulnerable to the risk of damage and danger from flooding. NASA and NOAA are together launching a new opportunity for citizens to work with us on the very important topic of coastal flooding. This coastal flooding challenge is part of NASA’s third International Space Apps Challenge - a two-day global mass collaboration event on April 12-13, 2014. During these two days, citizens around the world are invited to engage directly with NASA to develop awe-inspiring software, hardware, and data visualizations. Last year’s event involved more than 9,000 global participants in 83 locations. This year will introduce more than 60 robust challenges clustered in five themes: asteroids, Earth watch, human spaceflight, robotics, and space technology. The Coastal Inundation In Your Community challenge is one of four climate-related challenges using data provided by NASA, NOAA and EPA.

> 2014 International Space Apps Challenge: Coastal Inundation in Your Community
> NASA Invites Citizens to Collaborate on Coastal Flooding Challenge

Image Credit: NASA - Jeff Schmaltz, LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC


Hardy Star Survives Supernova Blast






When a massive star runs out fuel, it collapses and explodes as a supernova.  Although these explosions are extremely powerful, it is possible for a companion star to endure the blast. A team of astronomers using NASA’s Chandra X-ray Observatory and other telescopes has found evidence for one of these survivors. This hardy star is in a stellar explosion’s debris field − also called its supernova remnant − located in an HII region called DEM L241. An HII (pronounced ”H-two”) region is created when the radiation from hot, young stars strips away the electrons from neutral hydrogen atoms (HI) to form clouds of ionized hydrogen (HII). This HII region is located in the Large Magellanic Cloud, a small companion galaxy to the Milky Way. A new composite image of DEM L241 contains Chandra data (purple) that outlines the supernova remnant. The remnant remains hot and therefore X-ray bright for thousands of years after the original explosion occurred. Also included in this image are optical data from the Magellanic Cloud Emission Line Survey (MCELS) taken from ground-based telescopes in Chile (yellow and cyan), which trace the HII emission produced by DEM L241. Additional optical data from the Digitized Sky Survey (white) are also included, showing stars in the field. R. Davies, K. Elliott, and J. Meaburn, whose last initials were combined to give the object the first half of its name, first mapped DEM L241 in 1976. The recent data from Chandra revealed the presence of a point-like X-ray source at the same location as a young massive star within DEM L241’s supernova remnant. Astronomers can look at the details of the Chandra data to glean important clues about the nature of X-ray sources.  For example, how bright the X-rays are, how they change over time, and how they are distributed across the range of energy that Chandra observes. In this case, the data suggest that the point-like source is one component of a binary star system.  In such a celestial pair, either a neutron star or black hole (formed when the star went supernova) is in orbit with a star much larger than our Sun. As they orbit one another, the dense neutron star or black hole pulls material away its companion star through the wind of particles that flows away from its surface. If this result is confirmed, DEM L241 would be only the third binary containing both a massive star and a neutron star or black hole ever found in the aftermath of a supernova. Chandra’s X-ray data also show that the inside of the supernova remnant is enriched in oxygen, neon and magnesium. This enrichment and the presence of the massive star imply that the star that exploded had a mass greater than 25 times, to perhaps up to 40 times, that of the Sun. Optical observations with the South African Astronomical Observatory’s 1.9-meter telescope show the velocity of the massive star is changing and that it orbits around the neutron star or black hole with a period of tens of days. A detailed measurement of the velocity variation of the massive companion star should provide a definitive test of whether or not the binary contains a black hole. Indirect evidence already exists that other supernova remnants were formed by the collapse of a star to form a black hole. However, if the collapsed star in DEM L241 turns out to be a black hole, it would provide the strongest evidence yet for such a catastrophic event.  What does the future hold for this system? If the latest thinking is correct, the surviving massive star will be destroyed in a supernova explosion some millions of years from now. When it does, it may form a binary system containing two neutron stars or a neutron star and a black hole, or even a system with two black holes. A paper describing these results is available online and was published in the November 10, 2012 issue of The Astrophysical Journal (http://arxiv.org/abs/1208.1453). The authors are Fred Seward of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA; P. Charles from University of Southampton, UK; D. Foster from the South African Astronomical Observatory in Cape Town, South Africa; J. Dickel and P. Romero from University of New Mexico in Albuquerque, NM; Z. Edwards, M. Perry and R. Williams from Columbus State University in Columbus, GA. NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra’s science and flight operations.
Image credit: X-ray: NASA/CXC/SAO/F. Seward et al; Optical: NOAO/CTIO/MCELS, DSS
› View large image› Chandra on Flickr
Hardy Star Survives Supernova Blast

When a massive star runs out fuel, it collapses and explodes as a supernova.  Although these explosions are extremely powerful, it is possible for a companion star to endure the blast. A team of astronomers using NASA’s Chandra X-ray Observatory and other telescopes has found evidence for one of these survivors.
 
This hardy star is in a stellar explosion’s debris field − also called its supernova remnant − located in an HII region called DEM L241. An HII (pronounced ”H-two”) region is created when the radiation from hot, young stars strips away the electrons from neutral hydrogen atoms (HI) to form clouds of ionized hydrogen (HII). This HII region is located in the Large Magellanic Cloud, a small companion galaxy to the Milky Way.
 
A new composite image of DEM L241 contains Chandra data (purple) that outlines the supernova remnant. The remnant remains hot and therefore X-ray bright for thousands of years after the original explosion occurred. Also included in this image are optical data from the Magellanic Cloud Emission Line Survey (MCELS) taken from ground-based telescopes in Chile (yellow and cyan), which trace the HII emission produced by DEM L241. Additional optical data from the Digitized Sky Survey (white) are also included, showing stars in the field.
 
R. Davies, K. Elliott, and J. Meaburn, whose last initials were combined to give the object the first half of its name, first mapped DEM L241 in 1976. The recent data from Chandra revealed the presence of a point-like X-ray source at the same location as a young massive star within DEM L241’s supernova remnant.
 
Astronomers can look at the details of the Chandra data to glean important clues about the nature of X-ray sources.  For example, how bright the X-rays are, how they change over time, and how they are distributed across the range of energy that Chandra observes.
 
In this case, the data suggest that the point-like source is one component of a binary star system.  In such a celestial pair, either a neutron star or black hole (formed when the star went supernova) is in orbit with a star much larger than our Sun. As they orbit one another, the dense neutron star or black hole pulls material away its companion star through the wind of particles that flows away from its surface. If this result is confirmed, DEM L241 would be only the third binary containing both a massive star and a neutron star or black hole ever found in the aftermath of a supernova.
 
Chandra’s X-ray data also show that the inside of the supernova remnant is enriched in oxygen, neon and magnesium. This enrichment and the presence of the massive star imply that the star that exploded had a mass greater than 25 times, to perhaps up to 40 times, that of the Sun.
 
Optical observations with the South African Astronomical Observatory’s 1.9-meter telescope show the velocity of the massive star is changing and that it orbits around the neutron star or black hole with a period of tens of days. A detailed measurement of the velocity variation of the massive companion star should provide a definitive test of whether or not the binary contains a black hole.
 
Indirect evidence already exists that other supernova remnants were formed by the collapse of a star to form a black hole. However, if the collapsed star in DEM L241 turns out to be a black hole, it would provide the strongest evidence yet for such a catastrophic event. 
 
What does the future hold for this system? If the latest thinking is correct, the surviving massive star will be destroyed in a supernova explosion some millions of years from now. When it does, it may form a binary system containing two neutron stars or a neutron star and a black hole, or even a system with two black holes.
 
A paper describing these results is available online and was published in the November 10, 2012 issue of The Astrophysical Journal (http://arxiv.org/abs/1208.1453). The authors are Fred Seward of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA; P. Charles from University of Southampton, UK; D. Foster from the South African Astronomical Observatory in Cape Town, South Africa; J. Dickel and P. Romero from University of New Mexico in Albuquerque, NM; Z. Edwards, M. Perry and R. Williams from Columbus State University in Columbus, GA.
 
NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra’s science and flight operations.

Image credit: X-ray: NASA/CXC/SAO/F. Seward et al; Optical: NOAO/CTIO/MCELS, DSS

› View large image
› Chandra on Flickr


Jupiter’s Great Red Spot Viewed by Voyager I






At about 89,000 miles in diameter, Jupiter could swallow 1,000 Earths. It is the largest planet in the solar system and perhaps the most majestic. Vibrant bands of clouds carried by winds that can exceed 400 mph continuously circle the planet’s atmosphere. Such winds sustain spinning anticyclones like the Great Red Spot — a raging storm three and a half times the size of Earth located in Jupiter’s southern hemisphere. In January and February 1979, NASA’s Voyager 1 spacecraft zoomed toward Jupiter, capturing hundreds of images during its approach, including this close-up of swirling clouds around Jupiter’s Great Red Spot. This image was assembled from three black and white negatives. The observations revealed many unique features of the planet that are still being explored to this day.
> View more images and watch a time-lapse of Jupiter assembled from images taken by the spacecraft
Credit: NASA’s Goddard Space Flight Center. Video and images courtesy of NASA/JPL
Jupiter’s Great Red Spot Viewed by Voyager I

At about 89,000 miles in diameter, Jupiter could swallow 1,000 Earths. It is the largest planet in the solar system and perhaps the most majestic. Vibrant bands of clouds carried by winds that can exceed 400 mph continuously circle the planet’s atmosphere. Such winds sustain spinning anticyclones like the Great Red Spot — a raging storm three and a half times the size of Earth located in Jupiter’s southern hemisphere. In January and February 1979, NASA’s Voyager 1 spacecraft zoomed toward Jupiter, capturing hundreds of images during its approach, including this close-up of swirling clouds around Jupiter’s Great Red Spot. This image was assembled from three black and white negatives. The observations revealed many unique features of the planet that are still being explored to this day.

> View more images and watch a time-lapse of Jupiter assembled from images taken by the spacecraft

Credit: NASA’s Goddard Space Flight Center. Video and images courtesy of NASA/JPL